Narrative Review

Unique medical issues in adult patients with mucopolysaccharidoses

John Mitchell a,⁎, Kenneth I. Berger b, Andrea Borgo c, Elizabeth A. Braulnin d, Barbara K. Burton e, Kemel A. Ghotme i, Susanne G. Kircher g, David Molter h, Paul J. Orchard d, James Palmer i, Gregory M. Pastores j, David M. Rapoport b, Raymond Y. Wang k, Klane White l

⁎ Montreal Children’s Hospital, Montreal, Quebec, Canada
b New York University School of Medicine, New York, NY, United States
c Orthopedics and Traumatology Hospital, Padova, Italia
d University of Minnesota, Minneapolis, MN, United States
e Lurie Children’s Hospital, Chicago, IL, United States
f Faculty of Medicine, Universidad de La Sabana, Santa Clara, Chia, Cundinamarca, Colombia, and Neurosurgery Unit, Fundación Santafé de Bogotá, Bogotá, Bogotá D.C., Colombia
g Medical University of Vienna, Vienna, Austria
h St. Louis Children’s Hospital, St. Louis, MO, United States
i Salford Royal Hospital, Salford, United Kingdom
j Mater Misericordiae University Hospital, Ireland
k CHOC Children’s Specialists, Orange, CA, United States and School of Medicine, University of California-Irvine, Orange, CA, United States
l Children’s Hospital Seattle, Seattle, WA, United States

A R T I C L E I N F O

Article history:
Received 25 March 2016
Received in revised form 13 May 2016
Accepted 15 May 2016
Available online 11 June 2016

Keywords:
Mucopolysaccharidoses
Adult
Disease management
Lysosomal storage diseases
Review
Enzyme replacement therapy

A B S T R A C T

The mucopolysaccharidoses are a group of inherited metabolic diseases caused by deficiencies in enzymes involved in the sequential degradation of glycosaminoglycans (GAGs) leading to substrate accumulation in various tissues and organs. GAG accumulation can cause growth retardation and progressive damage to respiratory, cardiovascular, musculoskeletal, nervous, gastrointestinal, auditory, and visual systems. In the past, few people with severe phenotypic mucopolysaccharidosis (MPS) reached adulthood. However, better methods for diagnosis, multi-disciplinary care, and new therapies have extended lifespan, leading to an increasing number of patients surviving beyond childhood. The growing number of adult MPS patients poses significant challenges for clinicians who may not be familiar with the clinical manifestations of MPS. In addition, as new interventions have changed the natural history of these disorders, it is difficult to anticipate both the impact on life expectancy and other complications that may occur as these patients age. Because the MPS disorders are multi-organ diseases, their management requires a coordinated multi-disciplinary approach. Here we discuss the unique pattern of medical issues and multi-organ involvement in adult patients with MPS and identify the challenges that are associated with management of MPS. This review is based on information from an expert investigator meeting with MPS specialists held October 2–4, 2014 in Dublin, Ireland, as well as on current literature searches focusing on MPS and adults.

© 2016 The Authors. Published by Elsevier B.V. on behalf of European Federation of Internal Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The mucopolysaccharidoses are caused by deficiencies in enzymes involved in the sequential degradation of glycosaminoglycans (GAGs, hydrophilic polymers of highly modified hexose saccharides), which are ubiquitous in connective tissues. The resulting impaired degradation of GAGs in cells and tissues leads to substrate accumulation causing progressive multi-organ dysfunction [1]. Seven types of mucopolysaccharidosis (MPS) disorders have been described (Table 1), with MPS III and MPS IV each having two or more biochemical subtypes [1,2]. MPS I can be subdivided in three subtypes according to severity: Hurler syndrome (most severe), Hurler–Scheie syndrome, and Scheie

http://dx.doi.org/10.1016/j.ejim.2016.05.017
0953-6205/© 2016 The Authors. Published by Elsevier B.V. on behalf of European Federation of Internal Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
There are also neurological and non-neurological forms of MPS II. All MPS disorders follow an autosomal recessive inheritance pattern, with the exception of MPS II, which is X-linked. Patients with MPS progressively develop growth impairment and deficiencies in respiratory, cardiovascular, musculoskeletal, nervous, gastrointestinal, auditory, and visual systems (Fig. 1, Table 2). Patients with MPS I, II, III, and VII may also exhibit learning difficulties and neurological decline [1]. Although MPS IV and VI are generally considered not to affect neurocognitive development, some patients may have an IQ below the normal range [3,4]. It remains to be elucidated if this is a direct result of the disease or indirectly results from reduced school attendance or Table 2 clinical manifestations and medical issues of the mucopolysaccharidoses and adult specialists who may be involved in the evaluation and/or management care of these manifestations [1,17–14].

<table>
<thead>
<tr>
<th>Common clinical manifestations and medical issues</th>
<th>MPS types</th>
<th>Adult specialist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal manifestations: deformities of the spine, thoracic cage, hips, knees, skull, and/or hands, short stature, joint abnormalities, joint pain, joint restriction/hypermobility</td>
<td>All types</td>
<td>Orthopedist, rheumatologist, physiotherapist</td>
</tr>
<tr>
<td>Spinal cord issues: spinal instability, cord compression, myelopathy</td>
<td>I, II, IV, VI</td>
<td>Neurologist, spine orthopedist, neurosurgeon, anesthesiologist</td>
</tr>
<tr>
<td>Ear, nose, throat manifestations, speech problems</td>
<td>All types</td>
<td>Otolaryngologist, speech therapist</td>
</tr>
<tr>
<td>Respiratory manifestations: upper and/or lower airway obstruction, restrictive disease, sleep-disordered breathing</td>
<td>All types</td>
<td>Otolaryngologist, pulmonologist, spine orthopedist</td>
</tr>
<tr>
<td>Cardiac manifestations: aortic and mitral valve insufficiency / stenosis, left ventricular hypertrophy, abnormal diastolic function, pulmonary hypertension</td>
<td>All types</td>
<td>Cardiologist, intensivist, anesthesiologist</td>
</tr>
<tr>
<td>Ocular manifestations: corneal clouding, refractive errors, glaucoma, papilledema</td>
<td>All types</td>
<td>Neurologist, psychiatrist, neuropsychologist</td>
</tr>
<tr>
<td>Cognitive decline, loss of motor function, behavioral problems, epilepsy</td>
<td>I (mainly Hurler, Hurler–Scheie), severe II, III, VII</td>
<td>Gastroenterologist, general surgeon</td>
</tr>
<tr>
<td>Abdominal manifestations: hepatomegaly, splenomegaly, umbilical/inguinal hernias, chronic diarrhea</td>
<td>All types</td>
<td>Dermatologist</td>
</tr>
<tr>
<td>Poplar pearly rash across the scapulae, dermal melanocytosis, hirsutism</td>
<td>I, II, VI</td>
<td>Neurologist, hand surgeon</td>
</tr>
<tr>
<td>Carpal tunnel syndrome</td>
<td>I, II, IV, VI, VII</td>
<td>Dentist</td>
</tr>
<tr>
<td>Dental abnormalities: widely spaced and/or abnormally shaped teeth, weak enamel, gingival hyperplasia</td>
<td>All types</td>
<td>Anesthesiologist</td>
</tr>
<tr>
<td>Frequent surgery, diagnostic procedures requiring anesthesia</td>
<td>Mainly MPS I-Hurler</td>
<td>Bone marrow transplant specialist</td>
</tr>
<tr>
<td>Follow-up of late effects/complications related to hematopoietic stem cell transplantation</td>
<td>All types</td>
<td>Psychologist, psychiatrist</td>
</tr>
<tr>
<td>Reduced quality of life, depressed feelings</td>
<td>All types</td>
<td>Clinical geneticist, metabolic physician, general physician</td>
</tr>
<tr>
<td>Coordination of care</td>
<td>All types</td>
<td></td>
</tr>
</tbody>
</table>
education and stimulation. All MPS disorders are heterogeneous with respect to genotype, clinical presentation, and progression rate, representing a disease continuum from slow or attenuated to rapid disease progression. Patients with rapidly progressing MPS experience symptoms in a wide range of organ systems and clinical recognition is therefore early; patients with attenuated forms and less obvious clinical manifestations may not be diagnosed until they reach adolescence or adulthood [5].

Individuals with MPS, particularly those with rapidly progressing variants, have historically experienced a shortened lifespan, with many dying during childhood or adolescence. As a result, adults once represented a very small percentage of the MPS population consisting mainly of those with a more slowly progressing disease phenotype. However, studies in MPS II and MPS VI patients show a trend towards longer survival over recent decades (1990s–2010s) (Fig. 2) [15,16]. Several factors may explain this trend, including improved early diagnosis, earlier recognition of patients with slower disease progression, advances in supportive, multi-disciplinary care, increased awareness of disease manifestations and anesthetic risks, and the introduction of effective systemic therapies including enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT). It can be expected that the current trend towards longer survival will continue and that MPS will become an important chronic adult medical issue.

Despite increased interest in rare diseases among clinicians and researchers, published literature on adults with MPS remains limited. Although several studies in large groups of MPS patients exist [7,9,10,18–22], adults make up only a small portion of these study populations. This review discusses the unique medical issues of adults with MPS based on information from presentations and discussions among 53 participants (including pediatric subspecialists, medical geneticists, adult MPS specialists, nurses, and patients) who met on October 2–4, 2014, in Dublin, Ireland, and on additional relevant literature selected by the specialists and a search in PubMed using search terms (“mucopolysaccharidosis[MeSH Terms]” AND “adult OR age”) performed in January 2015 with filter “English and humans” (1078 results). This review focuses on patients with intact cognition. It should be noted that cognitive impairment can greatly affect clinical care and outcomes of therapies discussed in this review.

2. Multi-disciplinary management

MPS disorders are multi-organ diseases that require multi-disciplinary management involving clinical geneticists, metabolic physiologists, orthopedists, general surgeons, neurosurgeons, pulmonologists, cardiologists, neurologists, anesthesiologists, otolaryngologists, ophthalmologists, dentists, transplant physicians, psychiatrists, and physiotherapists (Table 2). The management of MPS in an adult clinical setting creates challenges due to the patients’ short stature and medical complexity, the fact that most internists are unfamiliar with MPS disorders, and the limited availability of assistance for multi-disciplinary patient care (coordination of timely, patient-friendly, integrated care by different specialists) in adult clinics. Internists should be aware of the special needs of MPS patients. A proper program is required to guide young adults with MPS from pediatric to adult health care systems, ensuring routine review and preserving of important clinical information and experiences [23,24].

3. Systemic therapies

MPS-specific therapies include ERT and HSCT. In the past decade, the use of recombinant human ERT has become a widely available treatment for MPS I, II, IVA, and VI. Clinical trials of ERT for MPS VII and MPS IIIA are ongoing [25,26]. ERT has been shown to have favorable effects on urinary GAG levels, endurance, respiratory function, range of joint motion, hepatomegaly, growth (height), and cardiac function [27–31]. In addition, one study recently suggested a significant survival benefit in MPS VI patients treated with ERT over ERT-naive patients [16].

HSCT is considered the standard of care in infants with severe MPS I (Hurler syndrome or MPS IH), positively affecting cognitive and intellectual development [7]. A clear survival benefit has been shown for patients with MPS IH treated with HSCT [32]. HSCT is preferably done as early as possible after birth, as the long-term neurocognitive prognosis after HSCT is predominantly determined by the degree of damage to the central nervous system at the time of transplant [33]. Although some case reports have also shown favorable outcomes in other types of MPS [34–36], HSCT is primarily reserved for MPS IH (associated with neurocognitive impairment) due to the inability of intravenously infused ERT to pass the blood–brain barrier. More research is warranted to evaluate whether the long-term advantages of HSCT outweigh its significant morbidity risks in other types of MPS [37].

HSCT and ERT are most effective when started early in life, before the development of irreversible damage [1,7]. Limited data exist on the effects of ERT when started in adulthood and more research is warranted to fill this evidence gap.
4. Musculoskeletal manifestations

Skeletal and joint abnormalities are observed in all MPS types [8,10,13,38,39]. Each disorder is associated with typical radiological findings (dysostosis multiplex) [40]; however, great phenotypic variability exists among affected individuals (Table 3). Adult patients with severe forms of MPS I, II, IV, VI, and VII generally show significant bone and joint deformities and short stature. Degenerative joint disease and subluxation, especially of the hip joints, lumbosacral kyphosis, and genu valgum worsen with age during childhood and, to a lesser degree, adolescence. Bone dysplasia, which can be worsened by the abnormality of the joint in case of subluxation or severe valgus, can ultimately lead to painful arthritis and severe functional impairment requiring the use of a walking aid or wheelchair. Studies have shown little effect of ERT and HSCT on bone disease [33,41].

Because of the high surgical (anesthetic) risk (see Respiratory manifestations and Anesthesia below), and uncertain long-term benefits in adults with MPS, the experts at the meeting in Dublin recommended surgery only when pain limits everyday activities, when patients experience pain with rest, when joint stiffness limits motion, or when anti-inflammatory drugs, physical therapy, or walking support provide inadequate pain relief. The patient’s QoL should always be balanced against the risks of surgery/anesthesia for each case individually. As mobility loss can negatively impact QoL [42], the patient’s potential to remain mobile should always be considered in the decision to operate. When surgery is indicated, it is important to have a surgical group familiar with the specific surgical and anesthetic issues associated with MPS.

5. Respiratory manifestations

Respiratory impairments, including obstructive and restrictive disease, occur in all MPS types and are among the most important causes of mortality [15,17]. The potential underlying causes of these respiratory manifestations are diverse (Table 4) [11,12]. Sleep-disordered breathing, i.e. obstructive sleep apnea or sustained hyperventilation, is often the first sign of respiratory compromise [51,52]. In the long term, sleep-disordered breathing can have cardiac consequences, including pulmonary hypertension, cor pulmonale, and cardiorespiratory failure [44]. Pulmonary impairment and sleep-disordered breathing both lead to debilitating fatigue, an often underreported manifestation of MPS. In a study in patients with MPS IVA, 63% of adults (N = 27) reported fatigue [42].

Table 3

<table>
<thead>
<tr>
<th>Disorder</th>
<th>MPS I (severe)</th>
<th>MPS I (attenuated)</th>
<th>MPS II</th>
<th>MPS III</th>
<th>MPS IV</th>
<th>MPS VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical instabilities</td>
<td>2+</td>
<td>2+</td>
<td>1+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thoracolumbar kyphosis</td>
<td>3+</td>
<td>0</td>
<td>1+</td>
<td>0</td>
<td>1+</td>
<td>0</td>
</tr>
<tr>
<td>Scoliosis</td>
<td>3+</td>
<td>0</td>
<td>1+</td>
<td>0</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>Hip dysplasia</td>
<td>2+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2+</td>
<td>0</td>
</tr>
<tr>
<td>Genu valgum</td>
<td>3+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3+</td>
<td>0</td>
</tr>
<tr>
<td>Carpal tunnel syndrome</td>
<td>3+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3+</td>
<td>0</td>
</tr>
</tbody>
</table>

0 = not reported; 1 = rare; 2 = common; 3 = frequent.

* Kyphoscoliosis is frequently observed in patients with MPS IVA [10].

Table 4
Potential underlying causes of respiratory problems in patients with MPS. Adapted from Berger et al [12], with permission.

<table>
<thead>
<tr>
<th>Airway obstruction</th>
<th>Restrictive disease</th>
<th>Other mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrowing of supraglottic and infraglottic airway due to</td>
<td>Progressive reduction of lung volume due to</td>
<td>• Disproportional length of trachea and spine</td>
</tr>
<tr>
<td>• GAG deposition and secondary inflammation;</td>
<td>• small thoracic cage;</td>
<td>• Spinal cord compression</td>
</tr>
<tr>
<td>• skull/spine abnormalities;</td>
<td>• thoracic cage deformities, kyphoscoliosis;</td>
<td>• Cardiac disease</td>
</tr>
<tr>
<td>• abnormalities of trachea and main stem bronchi.</td>
<td>• weakness of the diaphragm;</td>
<td>• Central nervous system disease</td>
</tr>
<tr>
<td></td>
<td>• impaired diaphragm mortility from enlarged liver/spleen</td>
<td>• Hydrocephalus</td>
</tr>
</tbody>
</table>
There is a striking lack of publications addressing airway management in adults with MPS but the guidelines for the evaluation and management of respiratory problems and sleep-disordered breathing in MPS patients, published in 2013, apply for both pediatric and adult patients [12]. It is important that adult pulmonologists are aware of the high respiratory risk associated with MPS. If not properly evaluated, respiratory problems may go unnoticed due to respiratory dysfunction being masked by physical inactivity.

Evaluation of respiratory function in MPS patients can be problematic [12]. Standard values for spirometry cannot be used in patients with short stature and pediatric-size equipment often has to be used. Certain pulmonary function tests may not be possible due to cognitive impairment or behavioral problems. Treatment is as for other forms of obstructive and restrictive pulmonary diseases and is primarily symptomatic.

For the diagnosis of sleep-disordered breathing, guidelines recommend polysomnography in all patients following a diagnosis of MPS, then repeated monitoring based on presence of snoring, excessive daytime somnolence, development of respiratory failure, and a reduction in vital capacity [12]. Sleep-disordered breathing in adult MPS patients can be managed with continuous positive airway pressure (for obstructive sleep apnea) or non-invasive ventilatory support systems (e.g., bi-level positive airway pressure, in case of nocturnal hypoventilation) [12]. New therapies such as oral appliances (e.g., a custom-fitted mouthpiece) may also be considered for obstructive sleep apnea without hypoventilation. Although adenoidectomy and/or tonsillectomy are often performed (particularly in children) [53], there is currently a lack of conclusive evidence of benefit from published post-operative results. These interventions may be only partially successful due to abnormal surrounding tissues. Patients may also benefit from reduction of the tongue (orthognathic surgery), but this has not been described so far.

Tracheostomy should only be considered when other therapies have failed and deferred until absolutely needed. Although immediately life-saving, it is considered an indicator of rapid deterioration and increasing mortality. Tracheostomy is associated with a high risk of complications, such as tracheitis, mucous plug obstruction, or accidental decannulation, and can interfere considerably with activities of daily living, such as working, shopping, and traveling, and requires regular tracheostomy care, suctioning, inhaled medications and other related supplies [12]. However, when indicated, proper training and support can help to maintain or increase the patient's QoL. In particular, preservation of speech and the ability to eat has been shown to be important.

6. Ear, nose, and throat manifestations

MPS patients frequently develop progressive hearing loss due to chronic otitis media [54,55]. Whereas young children experience conductive hearing loss, adolescent and adult patients tend to develop mixed hearing loss or pure sensorineural hearing loss [56]. Although pressure equalization tubes (grommets) are often used in MPS patients with otitis media, hearing loss is usually not resolved. Hearing aids (behind the ear, bone anchored, or traditional bone hearing aids) may improve hearing. A case review of the first cochlear implants in two MPS children with profound sensorineural hearing loss recently reported benefit in terms of auditory performance and speech perception [57]. The advantages of this procedure should be balanced against anesthetic risks and the prohibition of magnetic resonance imaging use in patients with cochlear implants. Nerve compression from GAG storage at the internal auditory canal can reduce the efficacy of cochlear implants.

Oral manifestations in MPS patients include gingival hyperplasia, macroglossia, swelling of adenoids and/or tonsils, and impaired opening of the mouth [54]. Mechanical extrinsic compression, intrinsic factors (GAG deposits in the tongue and possibly the esophagus), abnormal nerve function, and/or cognitive issues, can lead to swallowing problems. Hearing impairment and mechanical alterations to the larynx commonly cause speech problems [14,58]. Poor communication due to hearing and speech problems can lead to depression, isolation, and less participation in care.

7. Cardiac manifestations

Cardiac abnormalities are a major cause of mortality in untreated MPS patients [15,17,19]. Several studies have described the cardiac manifestations of MPS, with some providing combined information on both adults and children [59–62]. Cardiac manifestations occur in most adults with MPS I, II, and VI [8,18,38] but have also been described for other types of MPS [63,64]. Progressive aortic and mitral valve insufficiency and stenosis, left ventricular hypertrophy, and abnormal diastolic function are most common [65,66]. Patients with dermatan sulfate GAG accumulation (MPS I, II, VI) have the highest incidence of valve abnormalities [59]. MPS individuals with slowly progressing disease may have severe cardiac valve pathology with few other expressions of the disease [67]. Studies have reported cardiac valve abnormalities in the majority of adult patients with slowly progressing MPS I (Scheie syndrome) [18,68] and in all adult patients with slowly progressing MPS VI [67,69].

Less common cardiac manifestations in adult MPS patients are conduction problems (arrhythmia, complete heart block), left ventricular aneurysms, cardiomyopathy, and coronary artery disease [70–74]. Although cardiac manifestations have only been reported occasionally for MPS III [75], severe life-threatening cardiac problems may occur in these patients as well [70]. Evidence suggests pan-arterial storage of GAGs in all MPS types, as confirmed by an increase in carotid intima-media thickness and arterial dysfunction (increased aortic stiffness, poor endothelial function) versus healthy controls [8,76–79]. Because of this phenomenon, which manifests in childhood and, in untreated individuals, worsens with age, MPS patients tend to exhibit an arterial age comparable to that of healthy subjects three times their age and frequently present with increased blood pressure [8,74,78,80]. In patients with short stature, blood pressure is often difficult to measure accurately in adult clinics.

The presentation, evaluation, and management of cardiac manifestations in MPS disorders have been discussed in detail in 2011 [65]. ERT generally does not improve cardiac valve disease, although it may attenuate or delay valve disease progression. ERT may, however, have a positive impact on left ventricular hypertrophy [66] and ventricular function [81]. HSCT in MPS IH patients does not reverse valve disease but may attenuate progression and preserve ventricular function [82]. Although there is variation between and within MPS types and types of intervention, the existing literature suggests that the maximal impact of ERT and HSCT on cardiac valves may decrease as patients age [31].

Successful valve replacement surgery has been reported in adults with all MPS types except MPS III [65]. Complications may occur during cardiothoracic surgery apart from associated anesthetic risks (discussed below). Thick, small, fibrotic valve annuli can complicate native valve removal, thus prolonging cardiopulmonary bypass time [83]. Myocardial preservation may be difficult in hypertrophied ventricles and GAG-laden coronary vessels. Rehabilitation may be difficult in the presence of orthopedic issues. Successful trans-catheter aortic valve replacement has been reported in a 30 year old with MPS I and may alleviate many major surgical issues [84], but the relatively shortened lifespan of such bioprosthetic valves may limit their usefulness in young adults. Cardiomyopathy is an uncommon finding in adult MPS, although cardiac transplantation has been performed in two individuals [85,86]. Despite the known involvement of the coronary arteries in MPS, coronary artery bypass in an adult has only been reported once [87]. Myocardial infarction has been occasionally described at post mortem examination in untreated MPS adults [88] and twice in adults who had recently begun ERT [73,89].
8. Spinal cord manifestations

Spinal instability and cord compression are common in MPS patients (Tables 2, 3). Spinal cord compression may occur at the cranio-cervical junction, the subaxial cervical spine, and the thoracic or lumbar spine [90,91]. It can be due to spinal canal stenosis caused by small, thickened posterior elements, odontoid hypoplasia, thickening of soft elements (dura, ligamentum flavum, cruciate ligaments), disc bulging, deformities such as kyphosis or scoliosis, or a combination of these factors. MPS IVA patients are most prone to atlantoaxial instability, due to a combination of dens hypoplasia and ligamentous laxity [44,92]. Studies focusing on spinal cord compression in adult patients are limited [69,93]. The MorCAP natural history study reported cervical myelopathy or cord compression in 55% of MPS IVA patients > 18 years [10]. In a case series describing nine untreated MPS VI patients aged 19–29 years, spinal cord compression was present in three patients [69]. In a study including 16 children and 15 adults with MPS VI, patients with slowly progressing disease mostly required first cranio-cervical decompression surgery during adolescence or adulthood (median age 24 years); patients with rapidly progressing disease had first surgery at a median age of 12 years [94].

Guidelines for the evaluation and management of spinal cord compression in patients with MPS VI and IVA were published in 2012 and 2013, respectively [90,91]. Recently, a group of experts also published consensus recommendations for the early identification and management of spinal cord compression in MPS IVA patients, including a list of routine and preoperative assessments [92]. Most of the recommendations are applicable to both pediatric and adult MPS patients.

Adult neurosurgeons and spine orthopedists often have little or no training in spinal issues in MPS patients. An internet-based anonymous survey among 20 pediatric and adult neurosurgeons and spine orthopedic surgeons practicing in different countries showed that only one of the six adult specialists who completed the questionnaire reported having experience with MPS patients. Thirty percent of the 20 specialists indicated that they had treated MPS patients aged ≥18 years. In 40% of these cases, this concerned a re-intervention from procedures performed at a younger age, underscoring the high risk of recurrence in these patients. Most respondents indicated that care by an interdisciplinary team (at a center of excellence) with participation of pediatric and adult specialists with experience in metabolic disorders and spinal cord issues would be the best approach to manage MPS patients with spinal cord issues.

9. Ocular manifestations

Ocular manifestations occur in all MPS types but are most prevalent in MPS I, VI, and VII [95–97]. Progressive corneal clouding and refractive error problems are most common with glaucoma, retinopathy, increased intraocular pressure, optic disc swelling, and optic atrophy also being described. Ocular manifestations can lead to visual impairment, visual field constriction, night blindness, or photosensitivity [95,96,98]. As vision loss can considerably affect patients’ independence and QoL, managing ocular manifestations is important. An overview of ocular manifestations in MPS patients and recommendations for evaluation and management were published in 2010 [96]. Fahnehjelm et al. (2012) published guidelines for the diagnosis and management of ocular manifestations in children with MPS [97] and most also apply to adults. These guidelines recommend assessment of ophthalmological function at diagnosis. Routine follow-up by an ophthalmologist is not recommended for adults [97]. However, a regular basic evaluation of vision and ophthalmological abnormalities is recommended as part the general routine physical examination [6].

10. Anesthesia

MPS patients frequently require general anesthesia for diagnostic imaging and surgical procedures (correction of spinal deformities, acetalubar hip dysplasia or genu valgum, corneal transplant, myringotomy with placement of pressure equalization tubes, spinal decompression surgery, tonsillectomy, adenoidectomy, hernia repair) [27,99]. Longer life expectancy may lead to an increase in the number of surgical re-interventions, a trend which is already evident today. In the Hunter Outcome Survey, the median number of surgical procedures per patient increased from two in those who died before 1985 to five in those who died since 1985 [15].

Potential anesthetic problems are numerous and encompass not only the surgical procedure itself but also sedation that may be required for preoperative investigations. Abnormal anatomical features and tissue deposits can lead to airway, cardiac, intravascular access, and cervical spine problems. Typical airway complications that can arise during anesthesia include difficulties with bag mask ventilation, intubation/extubation problems, subglottic stenosis, and profuse and thick secretions [100]. Spinal cord compression or atlantoaxial instability also increase anesthetic difficulty; the former because of the increased risk of potential spinal cord ischemia during hypotensive episodes during surgery and the latter from the risk to the cervical spinal cord during airway management. Cardiac problems such as pulmonary hypertension, cardiomyopathy, and valvular disorders are compounded by difficulties in accurately assessing cardiorespiratory reserve [100]. Kyphoscoliosis may interfere with correct positioning during surgery. Behavioral and communication problems as well as neurocognitive delay can hinder assessment of involvement of other organ systems and the management of induction.

The management of adults with MPS is challenging for adult anesthetists as the patients’ short stature means that pediatric equipment is often required. The variable nature of MPS implies that no two patients present with identical problems; what works for one patient may not work for another. As risk factors such as airway difficulties worsen with age [101], previously successful anesthesia does not guarantee success with future re-interventions. For most adult anesthetists, MPS cases are extremely rare; therefore, more time is needed for preoperative assessment and planning. Although past anesthetic charts can identify potential problems and solutions, a metabolic physician or clinical geneticist may be a better important source of information about exercise tolerance, the results of sleep studies and cardiac investigations. Anesthetic risk factors in MPS disorders and recommendations for presurgical planning and pre-, peri-, and postsurgical management have been discussed in detail [100,102]. Potential risks and benefits of procedures should always be discussed with the patient before surgery, including the possibility of emergency tracheostomy as a life-saving measure. Because of the high risk of difficult intubation, paralysis and death, anesthesia in MPS patients should only be planned in tertiary care hospitals that have the expertise to manage anticipated problems.

The results of a survey of the 1900 Difficult Airway Society members (UK) presented by Dr. James Palmer during the Dublin expert meeting summarized the limited experience of anesthetists in treating adults with MPS and the high anesthetic risk in these patients. The survey was worded so that clinicians who had no experience with MPS exited the survey immediately. Of the 242 respondents who had any experience with MPS, only 34 (14%) had experience of adult MPS patients, and of these, 30 had anesthetized adult MPS patients in the past year. Just over half had treated four cases or more, mostly patients with MPS IV or VI. Twelve patients received general anesthesia and five regional anesthesia (four with sedation). Minor airway or other problems were reported in four patients, one patient had significant airway difficulty requiring prolonged non-surgical intervention, and seven had major airway problems requiring emergency tracheostomy. Two patients died. These results emphasize the necessity to include anesthesiologists in the multi-disciplinary team of adult specialists in order to ensure that the available knowledge about the patient is accessible to the whole team. In this way, a group of specialists who are familiar with the unique issues of MPS patients during surgery will be involved in the care of these patients and help ensure safe surgical outcomes.
11. Other manifestations of MPS

Abdominal region complications including hepatomegaly, splenomegaly, and umbilical or inguinal hernias have been described in all MPS types [7–10]. Although hernias can be surgically repaired, they often recur [6].

Carpal tunnel syndrome or trigger fingers frequently occur in MPS I, II, and VI [13,103,104]. Whereas splinting and non-steroidal anti-inflammatory drugs may be considered for symptomatic treatment of mild cases of carpal tunnel syndrome, surgery (median nerve release) is indicated in cases with clinical and electrodiagnostic evidence of compressive neuropathy [103]. The risk of recurrent carpal tunnel syndrome after surgery in MPS patients has not been defined as yet.

Dental abnormalities (widely spaced teeth with structurally weak enamel, small pointed cusps, spade-shaped incisors, pitted buccal surfaces, gingival hyperplasia) have been described for MPS IVA and MPS VI but appear to be less common in other types of MPS [44,105]. Fluoride supplementation can help to prevent caries. Fissure sealing of dentition may be considered in some cases [6]. Dermatological problems occur in MPS II, MPS III, and MPS VI [1,8,20,106] (Table 2).

12. Conclusions

Historically, patients with MPS have primarily been cared for by pediatric specialties. However, with more effective therapy and supportive care, there is an evolution towards an increasing population of MPS patients that will require chronic care as adults. This will create new challenges for adult primary care providers and specialists treating these individuals. It is expected that the number of MPS adults, as well as the likelihood of encountering such patients in an adult specialist’s practice, will further increase in the coming years. To provide optimal care, it will be critical to continue routine evaluations of the clinical manifestations of MPS throughout adulthood. Surgical procedures in adult MPS patients may be complicated by several factors, including short stature, bone deformities, obstructive and restrictive airway problems, and increased anesthetic risk. Thus, an individualized approach that balances benefits and risks of surgical procedures is required. To improve the management of MPS in adulthood, the modified natural history of these disorders should be systematically captured, and more clinical studies should include, and focus on, adult patients. There is also a need for programs guiding transition from pediatric to adult health care and for a medical home or coordinating physicians who can monitor disease management and progression. Development of adult rare disease clinics as well as inclusion of treatable rare diseases into training programs in adult medicine may help improve outcomes for adult MPS patients [107]. The importance of management teams composed of health care specialists who are properly trained to meet the specific, unique, medical needs of MPS patients should be stressed.

Learning points

• The MPS disorders are caused by deficiencies in enzymes involved in GAG catabolism, leading to growth retardation and progressive damage to respiratory, cardiovascular, musculoskeletal, nervous, gastrointestinal, auditory, and visual systems.
• Better methods for diagnosis, multi-disciplinary care, and new therapies have extended lifespan, leading to an increasing number of adults with MPS.
• Optimal care for adults with MPS requires:
 o Programs guiding transition from pediatric to adult health care
 o Continuation of routine evaluations of clinical manifestations throughout adulthood
 o A medical home or coordinating physicians who can monitor disease progression and streamline disease management
 o Management teams composed of health care specialists properly trained to meet the specific, unique, medical needs of adult MPS patients
 o Development of adult rare disease clinics and inclusion of treatable rare diseases into training programs in adult medicine
 o More studies focusing on adult MPS patients

Conflicts of interest

The content of this manuscript was based on presentations and discussions during an expert meeting that was coordinated and funded by BioMarin Pharmaceutical Inc.

Dr. Mitchell has participated in BioMarin sponsored clinical trials. He has received travel support and consulting fees from BioMarin.

Dr. Berger reports grants and personal fees for consultancy from BioMarin and Genzyme, during the conduct of the study; personal fees for consultancy from Teva, and Vertex outside the submitted work.

Dr. Borojevic reports personal fees from BioMarin, outside the submitted work.

Dr. Braunlin reports personal fees for travel and lodging to participate in the expert meeting about MPS in adults from BioMarin Pharmaceutical Inc. associated with the submitted work; grants and non-financial support from BioMarin Pharmaceutical Inc. and consulting fees to her department from Ultragenyx, outside the submitted work.

Dr. Burton reports personal fees and clinical trial support from BioMarin; grants, personal fees, and clinical trial support from Shire; personal fees and clinical trial support from Genzyme; personal fees from Regenx Bio; and clinical trial support from Alexion, Ultragenyx, and Cytonet, outside the submitted work. Dr. Ghormle has nothing to disclose.

Dr. Kircher reports personal fees for a lecture held at the Expert meeting about Adulthood and MPS and travel costs from BioMarin Pharmaceutical Inc., associated with the submitted work. Dr. Molter reports personal fees from BioMarin and grants and personal fees from Shire, outside the submitted work. Dr. Orchard reports grants and personal fees from Genzyme, grants from BioMarin, outside the submitted work. Dr. Palmer has nothing to disclose.

Dr. Pastores reports an honorarium from BioMarin, during the conduct of the study and prior recipient of grants for the conduct of clinical trials from BioMarin and Genzyme (Sanofi) for enzyme replacement therapy in the mucopolysaccharidoses.

Dr. Rapoport reports support from BioMarin for the Dublin meeting and for past consulting on some of the studies.

Dr. Wang reports personal fees from BioMarin for the Dublin meeting and for past consulting on some of the studies.

Dr. White reports personal fees from BioMarin during the conduct of the study and outside the submitted work.

Acknowledgments

The authors are grateful to Ismar Healthcare NV for their assistance in writing of the manuscript, which was funded by BioMarin Pharmaceutical Inc. The current review is based on presentations and discussions from an expert meeting on MPS and adulthood that was held October 2–4, 2014 in Dublin, Ireland. This meeting was coordinated and funded by BioMarin Pharmaceutical Inc. The authors would like to thank all specialists who participated in this meeting.

References

Cheeramminh S, Bayat T, Mulhall KJ. Total hip arthroplasty in mucopolysaccharidosis type IH. Case Rep Orthop 2011;2011:432540.

